M1.	(a)	M1 $MnO_2 + 4H^+ + 2e^- \rightarrow Mn^{2+} + 2H_2O$	1
		OR multiples	1
	M2	An oxidising agent is an <u>electron acceptor</u> OR <u>receives / accepts / gains electrons</u> Ignore state symbols	
		M2 NOT an "electron pair acceptor"	1
	М3	MnO₂ is the oxidising agent Ignore "takes electrons" or "takes away electrons"	1
(b)	M1	Formation of SO ₂ and Br ₂ (could be in an equation)	1
	M2	Balanced equation Several possible equations $2KBr + 3H_2SO_4 \rightarrow 2KHSO_4 + Br_2 + SO_2 + 2H_2O$ OR $2KBr + 2H_2SO_4 \rightarrow K_2SO_4 + Br_2 + SO_2 + 2H_2O$	1
	М3	2KBr + $Cl_2 \rightarrow 2KCl + Br_2$ M2 Could be ionic equation with or without K* $2Br^{-} + 6H^{+} + 3SO_4^{2-} \rightarrow Br_2 + 2HSO_4^{-} + SO_2 + 2H_2O$ $(3H_2SO_4)$ $2Br^{-} + 4H^{+} + SO_4^{2-} \rightarrow Br_2 + SO_2 + 2H_2O$ $(2HBr + H_2SO_4)$ Accept HBr and H_2SO_4 in these equations as shown or mixed variants that balance. Ignore equations for KBr reacting to produce HBr M3 Could be ionic equation with or without K* $2Br^{-} + Cl_2 \rightarrow 2Cl^{-} + Br_2$	1

M4 % atom economy of bromine

$$\frac{Br_2}{2KBr + Cl_2} \times 100 = \frac{(2 \times 79.9)}{238 + 71} \times 100 = \frac{159.8}{309} \times 100$$

= **51.7%** OR **52%**

M4 Ignore greater number of significant figures

- M5 One from:
- High atom economy
- Less waste products
- Cl₂ is available on a large-scale
- No SO₂ produced
- Does not use concentrated H₂SO₄
- (Aqueous) KBr or bromide (ion) in seawater.
- Process 3 is simple(st) or easiest to carry out
 M5 Ignore reference to cost Ignore reference to yield
- (c) **M1** HBr **–1**
 - M2 HBrO (+)1
 - M3 Equilibrium will shift <u>to the right</u> OR <u>L to R</u> OR Favours forward reaction OR Produces more HBrO

M4 Consequential on correct M3 OR to oppose the loss of HBrO OR replaces (or implied) the HBrO (that has been used up)

[12]

1

1

1

1

1

M2. (a) Electronegativity increases

Proton number increases (increase in nuclear charge)

	Same number of electron shells/levels Or same radius or Shielding of outer electrons remains the	
	same	1
	Attraction of <u>bond pair</u> to nucleus increases Allow 'electrons in bond' instead of 'bond pair'	1
(b)	Big <u>difference</u> in electronegativity leads to ionic bonding, smaller covalent <i>Lose a mark if formula incorrect</i>	
	Sodium oxide ionic lattice	1
	Strong forces of attraction between ions	1
	P₄O₁₀ covalent molecular Must have covalent and molecular (or molecules)	1
	Weak (intermolecular) forces between molecules Or weak vdW, or weak dipole–dipole between molecules	1
	melting point Na₂O greater than for P₄O₁₀ Or argument relating mpt to strength of forces	1
(c)	Moles NaOH = 0.0212 × 0.5 = 0.0106 M1 moles of NaOH correct	1
	Moles of H₃PO₄ = 1/3 moles of NaOH (= 0.00353) <i>M2 is for 1/3</i>	-
	Moles of P in 25000 I = 0.00353 × 10º = 3.53 × 10³ M3 is for factor of 1,000,000	1
	Moles of P₄O₁₀ = 3.53 × 10³/4 <i>M4 is for factor of 1/4 (or 1/2 if P₂</i> O₅)	1
	Mass of P₄O₁₀ = 3.53 × 10³/4 × 284 = 0.251 × 10⁶ g	1

1

= 251 kg (Or if P_2O_s 3.53 × 10³/2 × 142) M5 is for multiplying moles by M, with correct units allow conseq on incorrect M4 (allow 250-252)

1

M3 .(a)	percentage of oxygen is 58.33 correct calculation of ratios (C 3.125, H 4.17, O 3.645)		
			clearly relates ratios to formula eg simplifies ratios (C 1, H 1.29, O 1.17) or for H then 3.125 × 8 / 6 = 4.17% etc
		 Notes * correct percentage of oxygen can be stated or shown clearly in a calculation * to score final mark must clearly show how ratios relate to C₆H₈O₇ * allow full credit to candidate who correctly finds percentage of oxygen calculates M_r shows percentage of H is 8 divided by M_r 	
(b)	carbon dioxide / CO ₂	1	
(c)	 suitable reaction vessel eg sealed flask or test-tube with side arm or eg tube in bung 	1	
	suitable collection method eg gas syringe / over water in measuring eg cylinder	1	
	Notes * collection vessel must allow measurement of gas * if apparatus would leak lose second mark * ignore heating		

- * can draw tubing as single line
- * accept 2D or 3D diagrams
- * do not need labels, and ignore mis-labelling
- (ii) (1) mass on x-axis

1

1

1

Notes * If axes unlabelled use data to decide that mass is on the *x*-axis

sensible scales

Notes

* lose this mark if the *plotted points* do not cover at least half of the paper
* lose this mark if the graph plot goes off the squared paper

plots points correctly ± one square

 draws appropriate straight line of best fit, omitting point at 1.17g / 86 cm³

Notes

* lose this mark if the line deviates towards the point at 1.17g / 86 cm³
* candidates does not have to extrapolate the line to the origin to score this mark
* when checking for best fit, candidate's line **must** go through the origin ± one square. Extend candidate's line if necessary

1

(3) $129 \pm 1 \text{ cm}^3$

Notes

* accept this answer only

- 1
- (d) CO_2 / gas formed distends stomach / produces wind / increases pressure in stomach

(e) molecular formula has to be a simple multiple of the empirical formula

1

1

so approximate M_r value will distinguish between the options or equivalent wording

(f) gas escapes before bung inserted any 2 × 1 for

syringe sticks

carbon dioxide soluble in water

Notes

* do not accept 'operator error' / 'inaccurate equipment' / 'equipment leaks'

2

1

(g) volume depends on pressure and temperature

Notes

* do **not** accept 'to get a more accurate result' or equivalent wording without qualification

(h) Tablets could vary between samples or equivalent wording

Notes

* do **not** accept 'to get a more accurate / reliable result' or 'to make a fair test' without qualification

1

- (i) (i) NaHCO₃ least soluble
 - (ii) exhaust gases passed into mixture of NaCl and NH₃

1

1

(j) $2NaHCO_3 \rightarrow Na_2CO_3 + CO_2 + H_2O$

(k) 106.0 divided by 217.1 × 100 = 48.8%

Notes

* ignore precision of answer

[22]

1

1