M1. (a) M1 $\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}$
OR multiples
M2 An oxidising agent is an electron acceptor OR receives / accepts / gains electrons

Ignore state symbols
M2 NOT an "electron pair acceptor"

M3 MnO_{2} is the oxidising agent
Ignore "takes electrons" or "takes away electrons"
(b) M1 Formation of SO_{2} and Br_{2} (could be in an equation)

M2 Balanced equation
Several possible equations
$2 \mathrm{KBr}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathbf{2} \mathrm{KHSO}_{4}+\mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
OR
$2 \mathrm{KBr}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

M3 $\quad \mathbf{2 K B r}+\mathrm{Cl}_{2} \rightarrow \mathbf{2 K C l}+\mathrm{Br}_{2}$
M2 Could be ionic equation with or without K^{+}
$2 \mathrm{Br}+6 \mathrm{H}^{+}+3 \mathrm{SO}_{4}^{-2} \rightarrow \mathrm{Br}_{2}+2 \mathrm{HSO}_{4}^{-}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\left(3 \mathrm{H}_{2} \mathrm{SO}_{4}\right)$
$2 \mathrm{Br}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}{ }^{2-} \rightarrow \mathrm{Br}_{2}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
$\left(2 \mathrm{HBr}+\mathrm{H}_{2} \mathrm{SO}_{4}\right)$
Accept HBr and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in these equations as shown or mixed variants that balance.
Ignore equations for KBr reacting to produce HBr
M3 Could be ionic equation with or without K^{+}
$2 \mathrm{Br}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{Cl}+\mathrm{Br}_{2}$

M4 \% atom economy of bromine

$$
\begin{aligned}
& =\frac{\mathrm{Br}_{2}}{2 \mathrm{KBr}+\mathrm{Cl}_{2}} \times 100=\frac{(2 \times 79.9)}{238+71} \times 100=\frac{159.8}{309} \times 100 \\
& =\mathbf{5 1 . 7 \%} \text { OR 52\% } \\
& \quad \text { M4 Ignore greater number of significant figures }
\end{aligned}
$$

M5 One from:

- High atom economy
- Less waste products
- $\quad \mathrm{Cl}_{2}$ is available on a large-scale
- $\quad \mathrm{No} \mathrm{SO}_{2}$ produced
- Does not use concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$
- (Aqueous) KBr or bromide (ion) in seawater.
- Process 3 is simple(st) or easiest to carry out M5 Ignore reference to cost Ignore reference to yield
(c) $\mathbf{M 1} \quad \mathrm{HBr} \quad \mathbf{- 1}$ M2 $\mathrm{HBrO} \quad(+) \mathbf{1}$

M3 Equilibrium will shift to the right
OR
L to R
OR
Favours forward reaction
OR
Produces more HBrO

M4 $\quad \begin{aligned} & \text { Consequential on correct M3 } \\ & \text { OR }\end{aligned}$
to oppose the loss of HBrO OR
replaces (or implied) the HBrO (that has been used up)

M2. (a) Electronegativity increases

Proton number increases (increase in nuclear charge)
Page 3
Same number of electron shells/levels
Or same radius or Shielding of outer electrons remains the same1
Attraction of bond pair to nucleus increases
Allow 'electrons in bond' instead of 'bond pair'1
(b) Big difference in electronegativity leads to ionic bonding, smaller covalentLose a mark if formula incorrect1
Sodium oxide ionic lattice1
Strong forces of attraction between ions 1
$\mathrm{P}_{4} \mathrm{O}_{10}$ covalent molecular
Must have covalent and molecular (or molecules)1
Weak (intermolecular) forces between molecules
Or weak vdW, or weak dipole-dipole between molecules1
melting point $\mathrm{Na}_{2} \mathrm{O}$ greater than for $\mathrm{P}_{4} \mathrm{O}_{10}$
Or argument relating mpt to strength of forces
(c) Moles $\mathrm{NaOH}=0.0212 \times 0.5=0.0106$M1 moles of NaOH correct1
Moles of $\mathrm{H}_{3} \mathrm{PO}_{4}=1 / 3$ moles of $\mathrm{NaOH}(=0.00353)$
M2 is for $1 / 3$1
Moles of P in $25000 \mathrm{I}=0.00353 \times 10^{6}=3.53 \times 10^{3}$
M3 is for factor of $1,000,000$1Moles of $\mathrm{P}_{4} \mathrm{O}_{10}=3.53 \times 10^{3} / 4$M4 is for factor of $1 / 4$ (or $1 / 2$ if $P_{2} \mathrm{O}_{5}$)1Mass of $\mathrm{P}_{4} \mathrm{O}_{10}=3.53 \times 10^{3} / 4 \times 284=0.251 \times 10^{6} \mathrm{~g}$
Page 4

$$
=251 \mathrm{~kg}
$$

$$
\text { (Or if } \mathrm{P}_{2} \mathrm{O}_{5} 3.53 \times 10^{3} / 2 \times 142 \text {) }
$$

M5 is for multiplying moles by M, with correct units allow conseq on incorrect M4 (allow 250-252)

M3.(a) percentage of oxygen is 58.33

Notes

(b) carbon dioxide / CO_{2}
correct calculation of ratios (C 3.125, H 4.17, O 3.645)
clearly relates ratios to formula eg
simplifies ratios (C 1, H 1.29, O 1.17) or for H then $3.125 \times 8 / 6=4.17 \%$ etc

* correct percentage of oxygen can be stated or shown clearly in a calculation
* to score final mark must clearly show how ratios relate to $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{7}$
* allow full credit to candidate who correctly finds
percentage of oxygen
calculates M_{r}
shows percentage of H is 8 divided by M_{r}
suitable collection method eg gas syringe / over water in measuring eg cylinder

Notes

* collection vessel must allow measurement of gas
* if apparatus would leak lose second mark
* ignore heating
* can draw tubing as single line
* accept 2D or 3D diagrams
* do not need labels, and ignore mis-labelling
(ii) (1) mass on x-axis

> Notes
> * If axes unlabelled use data to decide that mass is on the x-axis
> sensible scales

Notes

* lose this mark if the plotted points do not cover at least half of the paper
* lose this mark if the graph plot goes off the squared paper
plots points correctly \pm one square
(d) CO_{2} / gas formed distends stomach / produces wind / increases pressure in stomach
(e) molecular formula has to be a simple multiple of the empirical formula
so approximate M_{r} value will distinguish between the options or equivalent wording
(f) gas escapes before bung inserted any 2×1 for syringe sticks carbon dioxide soluble in water

Notes

* do not accept 'operator error' / 'inaccurate equipment' / 'equipment leaks'
(i) (i) NaHCO_{3} least soluble
(ii) exhaust gases passed into mixture of NaCl and NH_{3}
(j) $\quad 2 \mathrm{NaHCO}_{3} \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Page 7

Notes

* accept multiples
(k) 106.0 divided by $217.1 \times 100=48.8 \%$

Notes

* ignore precision of answer

